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Abstract

In this paper, we present the performance of ma-
chine learning-based methods for detection of phishing
sites. We employ 9 machine learning techniques in-
cluding AdaBoost, Bagging, Support Vector Machines,
Classification and Regression Trees, Logistic Regres-
sion, Random Forests, Neural Networks, Naive Bayes,
and Bayesian Additive Regression Trees. We let these
machine learning techniques combine heuristics, and
also let machine learning-based detection methods dis-
tinguish phishing sites from others. We analyze our
dataset, which is composed of 1,500 phishing sites and
the same number of legitimate sites. We then classify
them using the machine learning-based detection meth-
ods, and measure the performance. In our evaluation,
we used fi1 measure, error rate, and Area Under the
ROC Curve (AUC) as performance metrics along with
our requirements for detection methods. The highest fi
measure is 0.8581, the lowest error rate is 14.15%, and
the highest AUC is 0.9342, all of which are observed in
the case of AdaBoost. We also observe that 7 out of 9
machine learning-based detection methods outperform
the traditional detection method.

Keywords: phishing, web spoofing, Ad-
aBoost, Bagging, SVM, CART, Logistic Regres-
sion, Random Forests, Neural Networks, Naive
Bayes, BART

1 Introduction

Phishing is a form of identity theft whose targets
are users rather than computer systems. A phishing
attacker attracts victims to a spoofed web site, a so-
called “phishing site”, and attempts to persuade them
to send their personal information.

To prevent a user from browsing phishing sites, there
are two distinct approaches. One is URL filtering. It
detects phishing sites by comparing the URL of a site a
user visits with a URL blacklist composed of the URLs

of phishing sites. However, it is difficult to build a
perfect blacklist due to the rapid increase of phish-
ing sites. According to trend reports published by the
Anti-Phishing Working Group [3], the number of re-
ported phishing sites was 25,630 in March 2008, far
surpassing the 14,315 in July 2005.

The other approach is a heuristic-based solution.
A heuristic is an algorithm to distinguish phishing
sites from others based on users’ experience, that is,
a heuristic checks if a site seems to be a phishing site.
A heuristic-based solution employs several heuristics
and converts results from each heuristic into a vector.
Based on the vector, the heuristic-based solution cal-
culates the likelihood of a site being a phishing site and
compares the likelihood with the defined discrimination
threshold. Different from URL filtering, a heuristic-
based solution has a possibility to identify new phishing
sites.

Unfortunately, the detection accuracy of existing
heuristic-based solutions is far from suitable for prac-
tical use [23], even if various studies [14, 20, 21] dis-
covered heuristics. To improve the detection accuracy,
both discovering innovative heuristics and refining the
calculation algorithm of the likelihood are important.

In our previous work [15], we attempted to employ
a machine learning technique to improve the detection
accuracy. We employed AdaBoost, a machine learning
technique, as a calculation method of the likelihood.
Our preliminary evaluation showed the AdaBoost-
based detection method can achieve higher detection
accuracy than the traditional detection method.

Here, we present a performance evaluation of 9
Machine Learning-based Detection Methods (MLB-
DMs) including AdaBoost, Bagging, Support Vector
Machines (SVM), Classification and Regression Trees
(CART), Logistic Regression (LR), Random Forests
(RF), Neural Networks (NN), Naive Bayes (NB) and
Bayesian Additive Regression Trees (BART). In the
evaluation, we used f1 measure, error rate, Area Under
the ROC Curve (AUC) as performance metrics along
with our requirements for detection methods. Our re-



quirements are (i) they must achieve high detection ac-
curacy, (ii) they must adjust their detection strategies
for web users.

We let all MLBDMs classify whether a site is
a phishing site or not by using a dataset of 3,000
URLSs, composed of 1,500 phishing sites reported dur-
ing November, 2007 — February, 2008, and the same
number of legitimate sites. We employ 8 heuristics
presented in CANTINA [24] and measure their per-
formance in a less biased way. The results show that
the highest f; measure is 0.8581, the lowest error rate
is 14.15%, and the highest AUC is 0.9342, all of which
are observed in the case of AdaBoost.

The rest of this paper is organized as follows: In Sec-
tion 2, we present our related work, and we introduce
the machine learning techniques in Section 3. In Sec-
tion 4, we describe our evaluation conditions, and we
show our experimental results in Section 5. We discuss
whether or not MLBDMSs can continue to provide bet-
ter performance in Section 6, and show our future work
in Section 7. Finally, we summarize our contributions
in Section 8.

2 Related Work

For mitigating phishing attacks, machine learning,
which facilitates the development of algorithms or tech-
niques by enabling computer systems to learn, has be-
gun to garner attention. PFILTER, which was pro-
posed by Fette et al. [11], employed SVM to distin-
guish phishing emails from other emails. According
to [1], Abu-Nimeh et al. compared the predictive ac-
curacy of several machine learning methods including
LR, CART, RF, NB, SVM, and BART. They analyzed
1,117 phishing emails and 1,718 legitimate emails with
43 features for distinguishing phishing emails. Their
research showed that the lowest error rate was 7.72%
in the case of Random Forests. In [5], Ram Basnet et
al. performed an evaluation of six different machine
learning-based detection methods. They analyzed 973
phishing emails and 3,027 legitimate emails with 12 fea-
tures, and showed that the lowest error rate was 2.01%.
The experimental conditions were different between [1]
and [5], however, the machine learning provided high
accuracy for the detection of phishing emails.

Aside from phishing emails, a machine learning
method was also used to detect phishing sites. Accord-
ing to [17], Pan et al. presented an SVM-based page
classifier for detection of phishing sites. They analyzed
279 phishing sites and 100 legitimate sites with 8 fea-
tures, and the results showed that the average error
rate was 16%.

Our previous work [15] employed AdaBoost for the
detection of phishing sites. We checked 100 phish-
ing sites and the same number of legitimate sites with
7 heuristics. We let AdaBoost to assign weights on

heuristics by training with 50 legitimate sites and the
same number of phishing sites, and tested the detec-
tion accuracy by using the rest of sites. Our perfor-
mance evaluation showed that the average error rate
was 14.7%.

We find that there are two problems in earlier re-
search. One is that the number of features for detecting
phishing sites is lesser than that for detecting phish-
ing emails. It indicates that the detection of phish-
ing sites is much difficult than that of phishing emails.
The other is that no research contribution confirmed
whether any kind of MLBDMSs were available to distin-
guish phishing sites from legitimate sites. To the best
of our knowledge, earlier research tested only one ma-
chine learning technique. In this paper, we evaluate 9
MLBDMSs and show their performance.

3 Overview of Machine Learning
Techniques

In this section, we briefly explain each machine
learning technique which is used in our evaluation.

3.1 AdaBoost

Adaptive Boosting (AdaBoost) [13] algorithm learns
a “strong” algorithm by combining a set of “weak” al-
gorithms h; and a set of weight ay:

Hapga =Yy hy. (1)

The weights are learned through supervised training
off-line [12]. Formally, AdaBoost uses a set of input
data {z;,y; : i = 1,...,m} where z; is the input and
y; is the classification.

Each weak algorithm is only required to make the
correct detections slightly over half the time. The Ad-
aBoost algorithm iterates the calculation of a set of
weight Dy (7) on the samples. At t = 1, the samples are
equally weighted so D1 (i) = 1/m.

The update rule consists of three stages. First, Ad-
aBoost chooses the weight as shown in Equation 2.
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where ¢, = Pri.p, [h(x;) # yi]. Second, AdaBoost
updates the weight by Equation 3.
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3.2 Bagging

Bootstrap Aggregation (Bagging) [6] is a typical en-
semble learning method, and its key feature is that
dataset is perturbed by resampling with replacement.
Given n samples in dataset, bagging selects m (m <n)
samples for training and constructs a classifier h. Tak-
ing B iterations, it outputs the final classifier by ma-
jority vote of hy, hso,...hp as shown in Equation 4.

B

fbagging = argmaxy Z(hz = y) (4)
i=1

3.3 Support Vector Machines

Support Vector Machines (SVM) [10] is also one of
the typical machine learning methods for classification
and regression. The key idea of SVM is to map data
from the input space into a higher dimensional feature
space, and to find the optimal separating hyperplane
between two classes by maximizing the margin between
the classes’ closest points.

A discriminating hyperplane will satisfy Equation 5.
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where the distance of any point = to a hyperplane

is |w'z; + wol/||w|| and the distance to the origin is

wol /[w]].

3.4 Logistic Regression

Logistic Regression (LR) [4] is a model used for bi-
nary data prediction. LR is designed to deal with con-
founding variables, and its model typically uses the logit
function as shown in Equation 6.

loglf(;()x) =0+ Z Biz; (6)

where x is a vector of predictors and 3 is a vector of
regression parameters.

3.5 Classification and Regression Trees

Classification and Regression Trees (CART) [§] is
a typical decision tree algorithm. The modeling and
prediction within the CART analysis is accomplished
through a recursive binary partitioning of a training
dataset. Each parent node is split into two child nodes
and the procedure of splitting is repeated by treating
each child node as a parent node. When a data node
cannot be split into additional child nodes, it is called
a terminal node. Once the first terminal node has been
created, the algorithm repeats the procedure for each
set of data until all data are categorized as terminal
nodes.

CART requires a measure of node impurity and gen-
erally employs Gini Index as an impurity function. In
a node t, the Gini Index criterion assigns a sample
to a class ¢; with the probability p(c;|t). The esti-
mated probability of misclassification under this rule
is as shown in Equation 7.

Gini Index = 1 — Y (p(ci[t))? (7)
3.6 Random Forest

Random Forest (RF) [7] is a classifier that consists
of many decision trees and outputs the class that is
the mode of the classes output by individual trees. In
building each decision tree model based on a different
random subset of the training dataset, a random subset
of the available variables is used to choose how best to
partition the dataset at each node. Each decision tree is
built to its maximum size, with no pruning performed.

The basic idea is similar to Bagging. The main dif-
ference between Bagging and RF is that RF uses a
random subset of the available variables whereas Bag-
ging uses all available variables. So, RF is suitable for
handling a very large number input variables.

3.7 Neural Network

Neural Network (NN) is a non-linear and parallel
computation model which is referred to a network of
biological neurons. NN has overwhelming strengths
in learning ability, auto-adapting ability, generalization
performance and anti-noise ability.

The neurons are organized into three types of lay-
ers. The input layer presents the feature vector of in-
put variables. The next layer is called a hidden layer;
NN assumes that there may be several hidden layers.
The final layer is the output layer, where there is one
node for classification. Since interconnections do not
loop back or skip other neurons, the network is called
feedforward.

3.8 Naive Bayes classifier

The Naive Bayes (NB) classifier is a simple but ef-
fective classifier that has been used in numerous appli-
cations such as email filtering. Generally, NB’s compu-
tational time is less than the non-naive Bayes approach
because NB is based on Bayes’ theorem with the inde-
pendent feature model. The model of prediction was
formulated in Equation 8.

fnp = argmax, P(y)II(z;]y) (8)
3.9 Bayesian Additive Regression Trees

Bayesian Additive Regression Trees (BART) [9] is
designed for discovering unknown function f that pre-
dicts an output Y using a p dimensional vector of inputs



. The basic idea of BART is to model by a sum of
regression trees,

fl) =" g(x) (9)
where function g denotes a binary regression tree. Re-
placing f in Equation 9 by modeling or approximating
f(z), BART obtains Equation 10 where € is the random
error.

Y =Y g()+ee~N0,0%), (10)

Conceptually, BART can be viewed as a Bayesian
nonparametric approach which fits a parameter rich
model using a strongly influential prior distribution.
BART does not require variable selection, which is per-
formed automatically as the trees are built. In addi-
tion, in order to fit the sum-of-trees model, BART uses
a tailored version of Bayesian backfitting Markov Chain
Monte Carlo simulation that iteratively constructs and
fits successive residuals.

4 Evaluation Approach

In this paper, we evaluate the performance of MLB-
DMs. We let each machine learning method com-
bine heuristics, perform supervised learning from the
dataset, and distinguish phishing sites from other sites.

In this section, we define metrics of the performance
evaluation along with our requirements for MLBDMs.
We then decide the heuristics that we used in our eval-
uation, and describe how we construct a dataset for
both training and testing. Finally, we explain the pre-
liminary set-up of our experiments.

4.1 Evaluation Metrics

First, we defined metrics for evaluating performance
along with requirements for detection methods. Our
requirements were as follows.

1. Accuracy

An MLBDM must achieve high detection accuracy.
User safety would obviously be compromised if
phishing prevention systems labeled phishing sites
as legitimate. Users would also complain if pre-
vention systems labeled legitimate sites as phish-
ing sites because of the interruption in browsing
caused by prevention systems.

2. Adjustment Capability

An MLBDM must adjust its strategy for detect-
ing phishing sites for web users. If a user is a
novice, who is easily taken in by phishing attacks,
phishing prevention systems should decrease false
negative errors instead of increasing false positive
errors. Conversely, if a user is a security expert,
the system should focus on decreasing false posi-
tive errors.

actual actual
phishing sites | legitimate sites
predict phishing sites tp fp
predict legitimate sites fn tn

Table I. Test Result

For Requirement 1, we used the f; measure (higher
is better) and the error rate (lower is better) as met-
rics to evaluate the detection accuracy. Statistically, fi
measure has been used as an index of a test’s accuracy.
This measure is the harmonic mean of precision and re-
call. Given the test result as shown in Table I, precision
p equals tp/(tp + fp) and recall r equals tp/(tp + fn).
The f; measure can be calculated by 2-p-7/(p+ 7).
The average error rate has been also a reasonable met-
ric to indicate the detection accuracy. It is calculated
by dividing the number of incorrectly identified sites
by the number of all sites in the dataset. So, the error
rate equals (fp+ fn)/(tp+tn+ fp+ fn).

For Requirement 2, we performed Receiver Operat-
ing Characteristic (ROC) analysis. Generally, detec-
tion methods calculate the likelihood of being phishing
sites L and compare the likelihood with the defined dis-
crimination threshold 6. In our experiment, MLBDMs
distinguish a phishing site by checking if L is less or
equal than (= 0). Imagine that 6 was higher than 0.
In this case, MLBDMs would tend to label a site as
phishing rather than as legitimate. Conversely, MLB-
DMs would tend to label a site as legitimate if 6 was
lower than 0. Accordingly, we assumed that adjusting
0 provides different detection strategies. Based on this
assumption, we employed ROC analysis because it has
been widely used in data analysis to study the effect
of varying the threshold on the numerical outcome of a
diagnostic test. We also used the Area Under the ROC
Curve (AUC; higher is better) as a metric to evaluate
adjustment capability.

4.2 Heuristics

In our evaluation, we employ 8 heuristics as follows.

e Age of Domain
Checking if the domain was registered more than
12 months ago. If the site has been registered more
than 12 months, the heuristic deems it a legitimate
site, and otherwise it deems it a phishing site.

e Known Images

Checking if a page contains inconsistent well-
known logos such as eBay, PayPal, Citibank, Bank
of America, Fifth Third Bank, Barclays Bank,
ANZ Bank, Chase Bank, and Wells Fargo Bank.
For example, if a site contains the eBay logos but
is not on an eBay domain, the heuristic deems this
site a phishing site.



e Suspicious URL

Checking if a URL of the site contains an “at”
symbol (@) or a “dash” (-) in the domain name.
If so, the heuristics deems it a phishing site be-
cause phishing attackers are likely to use these
symbols in the domain name of a phishing site.
When the at ”@” symbol is used in a URL,
all text before the @ symbol is ignored and the
browser references only the information following
the @ symbol as a hostname. Phishing attack-
ers likely abuse this URL scheme: For example, if
http://paypal.com@phishing.com is used, web
browsers would be directed to the phishing.com.
Even if it seemed like paypal.com, web browsers
would ignore this.

Suspicious Links

Similar to the Suspicious URL heuristic, this one
checks if a link on the page contains an “at” symbol
or a dash.

IP Address

Checking if the domain name of the site is an IP
Address. Although legitimate sites rarely link to
pages by an IP address, phishers often attract vic-
tims to phishing sites by IP address links.

Dots in URL

Checking if the URL of the site contains five
or more dots.  According to [11], dots can
be abused for attackers to construct legitimate-
looking URLs. One technique is to have a sub
domain. Another is to use a redirection script,
which to the user may appear like a site hosted at
google.com, but in reality will redirect the browser
to phishing.com. In both of these examples, either
by the inclusion of a URL into an open redirect
script or by the use of a number of sub domains,
there are a large number of dots in the URL.

Forms

Checking if the page contains any web input forms.
In the case of CANTINA, it scans the HTML for
<input> tags that accept text and are accompa-
nied by labels such as “credit card” and “pass-
word.” If so, the heuristic deems it a phishing
site.

TF-IDF-Final

This heuristic checks if the site is phishing by
employing TF-IDF-Final, which is an extension
of the Robust Hyperlinks algorithm [18]. When
the heuristic attempts to identify phishing sites,
it feeds the mixture word lexical signatures and a
domain name of the current web site into Google.
If the domain name matches the domain name of
the top 30 search results, the web site is labeled
legitimate.

These 8 heuristics were employed in CANTINA [24].
To the best of our knowledge, the most successful
tool for combining heuristics is CANTINA, which has
achieved high accuracy of detecting phishing sites with-
out using the URL blacklist.

In CANTINA, each heuristic returns 1 binomial
variable.  Based on the result of each heuristic,
CANTINA calculates the likelihood of being a phishing
site (L) by weighted majority as shown in Equation 11.

L=> Wixh, (11)

A positive value for L means that it is labeled as le-
gitimate, while a negative value or zero means that it
is labeled as a phishing site. Zhang et al. mentioned
that a heuristic should have high accuracy in detecting
phishing sites while also having a low false positive rate.
Thus, they assigned weight by calculating the true pos-
itive rate minus the false positive rate. Given the effect
e; of each heuristic, they calculated each weight propor-

tionally, that is:
€4

P

W; = (12)

4.3 Dataset

We then built a dataset with the criteria for choosing
URLs. Based on the criteria in the original CANTINA,
we collected URLs with the same number of phish-
ing sites and legitimate sites. All sites were English
language sites because CANTINA does not work well
if the sites are not written in English. First, we
chose 1,500 phishing sites that were reported on Phish-
Tank.com [16] from November, 2007 to February, 2008.
Second, we also selected 227 URLs from 3Sharp’s study
of anti-phishing toolbars [19]. There were listed 500
URLs of legitimate sites in [19], however, we could not
connect to many listed URLs. Third, we attempted to
collect 500 URLs from Alexa Web Search [2] and ob-
served 477 URLs. Finally, we gathered 796 URLs from
yahoo random link [22].

Each site was checked with our implementation
of heuristics, and was converted into a vector ¥ =
(x1,22...2p), where x;...x, are the values corre-
sponding to a specific feature. The dataset consisted of
8 binary explanatory variables and 1 binary response
variable.

To perform our evaluation in a less biased way, we
employed 4-fold cross validation. Furthermore, our
cross validation was repeated 10 times in order to av-
erage the result.

4.4 Experimental Set-up

We adjusted the parameters for MLBDMs to mini-
mize the error rate in training. For decision tree-based
machine learning techniques such as RF, we tested



Table II. Precision, Recall and f; measure, False Positive Rate(FPR), False Negative

Rate(FNR), Error Rate(ER), and AUC

Precision  Recall  f1 measure  FPR FNR ER AUC
AdaBoost 0.8614 0.8551 0.8581 13.83% 14.49% 14.15% 0.9342
Bagging 0.8492 0.8573 0.8527 15.36% 14.27% 14.82% 0.9231
SVM 0.8629 0.8498 0.8562 13.57% 15.02% 14.29%  0.8926
CART 0.8330 0.8542 0.8384 18.16% 14.58% 16.37%  0.9062
LR 0.8510 0.8588 0.8548 15.10% 14.12% 14.60% 0.9172
RF 0.8566 0.8546 0.8554 14.37% 14.54% 14.45% 0.9296
NN 0.8633 0.8512 0.8570 13.54% 14.88% 14.21% 0.9310
NB 0.8464 0.8636 0.8547 15.74% 13.64% 14.69% 0.9215
BART 0.8567 0.8550 0.8555 14.39% 14.50% 14.45% 0.9321
CANTINA 0.9134 0.6519 0.7606 06.21% 34.81% 20.52% 0.9162
them using different numbers of trees, namely 100, M {1 measure [ Error Rate (] AUC
200, 300, 400, and 500 trees. The minimum error rate ——————————— 551
(14.27%) was observed when the number of trees was asBoest | — Jo.gx2
300, followed by 200 and 400 (14.28%), 500 (14.30%), R et e ———
and 100 (14.37%). Thus, we set the number of trees to SV — O 8552

300 for RF-based detection methods.

The iteration time was set to 500 in all of our ex-
periments if the machine learning technique needed to
analyze iteratively for reducing training errors. The
minimum error rate (14.27%) was observed when the
number of iterations was 500, followed by 300 and 400
(14.28%), 200 (14.30%), and 100 (14.31%). In addi-
tion, finding the optimal iteration number is important,
however, the choice of the exact value of the optimal
iteration number is not often a critical issue since the
increase in test error is relatively slow.

For some types of machine learning techniques, we
used threshold value to approximate the prediction out-
put. For example, BART is designed for regression, not
for classification. Therefore, BART gives quantitative
value whereas we need an MLBDM to output binary
value that indicates whether a site is a phishing site or
not. In such cases, we employed threshold value and
observed if the result of BART regression was greater
than the threshold. We decided the threshold in the
same fashion as the original CANTINA. In the case of
CANTINA, the maximum likelihood of being a phish-
ing site is -1 and that of being a legitimate site is 1;
therefore, it employs the middle value 0 as the thresh-
old value. In SVM, we tested both linear and non-linear
kernel functions. The average error rate in training by
using Radial Based Function (RBF), one of the typi-
cal non-linear kernel functions, was 14.18%, less than
21.02% of linear kernel. Thus, we used RBF in our
experiments.

In NN, we selected the number of units in the hidden
layer, namely 1, 2, 3, 4, and 5 units, for finding the
minimum average error rate. The minimum error rate
(14.14%) was observed when the number of units was

10.8926
CART W 0.8384
[ 10.9062
0.8548
10.9172
0.8554
10.9296
0.8570
]0.9310
0.8547
10.9215
0.8555
]0.9321

LR

RF

NN

NB

BART

CANTINA

Il

10.9162

Figure 1. Test Result of f; measure, Error
Rate, and AUC

5, followed by 4 (14.23%), 2 (14.46%), 3 (15.48%), and
1 (16.03%).

5 Evaluation

In this section, we evaluate the performance of all
MLBDMs by measuring f; measure, error rate and
AUC, and studying them comparatively. We also com-
pare MLBDMs with the original CANTINA.

First, we measured the accuracy of all MLBDMs.
We calculated f; measure for each pattern of dataset
respectively, and also calculated their average as shown
in Table II. For readability, we summarized the per-
formance of MLBDMs in Figure 1 where black bars
denoted f; measure.

The highest f; measure was 0.8581 in AdaBoost, fol-
lowed by NN (0.8570), SVM (0.8562), BART (0.8555),



RF (0.8554), LR (0.8548), NB (0.8547), Bagging
(0.8527) and finally CART (0.8384). We observed that
the highest precision was 0.8633 in NN and the lowest
was 0.8330 in CART. The highest recall was 0.8636 in
NB and the lowest was 0.8498 in SVM.

We then calculated the error rate in Figure 1, where
gray bars denoted the error rate. The lowest error rate
was 14.15% in AdaBoost, followed by NN (14.21%),
SVM (14.29%), RF and BART (14.45%), LR (14.60%),
NB (14.69%), Bagging (14.82%), and finally CART
(16.37%). We observed that the lowest false positive
rate was 13.54% in NN and the highest was 18.16% in
CART. The lowest false negative rate was 13.64% in
NB and the highest was 15.02% in SVM.

We also calculated AUC as shown in Figure 1, where
white bars denoted AUC. The highest AUC was 0.9342
in AdaBoost, followed by BART (0.9321), NN (0.9310),
RF (0.9296), Bagging (0.9231), NB (0.9215), LR
(0.9172), CART (0.9062), and finally SVM (0.8956).
Additionally, we plotted ROC curves of all MLBDMs
as shown in Figure 2. For readability, each graph pre-
sented 3 ROC curves. We observed that all ROC curves
passed through the upper left space in the graph. It
indicated that all MLBDMs could achieve both high
true positive rate and lower false positive rate because
the best possible detection method would yield a point
in the upper left corner (0,1) of the ROC space, rep-
resenting that the true positive rate is 100% and the
false positive rate is 0%.

Finally, we compared all MLBDMs with
CANTINA’s detection method. We evaluated
the performance of CANTINA in the same way as that
described in Section 4, and observed f; measure was
0.7607, error rate was 20.52%, and AUC was 0.9162
as shown in Figure 1, respectively. According to our
comparison, 7 out of 9 MLBDMSs, namely AdaBoost,
Bagging, LR, RF, NN, NB, and BART-based detection
methods, outperformed CANTINA.

6 Discussion

In this section, we discuss whether or not MLBDMs
will continue to provide better performance. As we
mentioned in Section 4.3, our collected phishing sites
were reported on PhishTank.com from November, 2007
to February, 2008. Phishing attackers would attempt
to build new phishing sites which are designed to evade
detection, so we need to verify whether or not MLB-
DMs can keep higher performance in future.

For a preliminary analysis, we built new dataset
which contained modern phishing sites. We col-
lected 1,500 URLs of phishing sites reported on Phish-
Tank.com from August, 2008 to October, 2008. We
also gathered 1,500 URLs of legitimate sites in the same
fashion as we described in Section 4.3. By using these
3,000 URLs, we adjusted the parameters for MLBDMs

M f1 measure [ Error Rate [JAUC

O 0. 254
16.29%
AdaBoost ‘ 29 10.9198
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Figure 3. Test Result of f; measure, Error
Rate, and AUC by using new dataset

and measured their performance by doing 4-fold cross
validation 10 times.

The results were shown in Figure 3 where black
bars, gray bars, and white bars denoted the average
f1 measure, error rate, and AUC, respectively. The
highest f; measure was 0.8313 in RF, followed by
NB(0.8295), BART(0.8292), AdaBoost(0.8264),
NN(0.8241),  SVM(0.8233), LR(0.8223), Bag-
ging(0.8095), and finally CART(0.8015). The
lowest error rate was 16.28% in RF, followed by
AdaBoost(16.29%), SVM(16.36%), NN(16.40%),
BART(16.51%), NB(16.85%), Bagging(17.36%),
LR(17.59%), and finally CART(17.92%). The highest
AUC was 0.9204 in RF, followed by 0.9198(AdaBoost),
BART(0.9193), NN(0.9164), Bagging(0.9107),
LR(0.9103), NB(0.9083), CART(0.8923), and fi-
nally SVM(0.8655). Aside from MLBDMs, f; measure
was 0.7920, error rate was 18.11%, and AUC was
0.8945 in the case of CANTINA. Similar to the
comparison described in Section 5, 7 out of 9 MLB-
DMs, namely AdaBoost, Bagging, LR, RF, NN, NB,
and BART-based detection methods, outperformed
CANTINA. Accordingly, we predict that employing
machine learning for detection of phishing sites has
effectiveness.

7 Future Work

In our future work, we will implement a phishing
prevention system according to the detection result.
Within such a system, we should adjust the discrim-
ination threshold for each web user, as we mentioned
in Section 4.1.

Table III shows the false positive rate when the false
negative rate was less than 5.00%, and the false neg-
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Table III. FPR given FNR rate < 5.00%,
and FNR given FPR rate < 5.00%

ative rate when the false positive rate was less than
5.00%. The lowest false positive rate was 30.65% in the
case of AdaBoost, and the lowest false negative rate was
25.51% in the case of RF. This indicated that if novices
could accept 30.65% of false positive errors, 95.00% of
phishing sites would be blocked as phishing sites. Sim-
ilarly, if security experts could accept 25.51% of false
negative errors, 95.00% sites of legitimate sites would
be browsed normally. It is beyond of scope of this pa-
per, however, we need to decide the optimal threshold
for each user by both measuring each user’s knowledge
for the detection of phishing sites and estimating the
acceptable level of false positives and false negatives.

We also check if MLBDMSs incorporate new heuris-
tics. Developing sophisticated heuristics are also im-
portant to detect new phishing sites. In comparison
between Figure 1 and 3, the performance of MLB-
DMs were tended to decrease in the case of using new
dataset. We assumed that was caused by increasing
the average error rate of heuristics. Figure 4 showed
the error rate of each heuristic where black bars de-
noted error rates in the case of using old dataset, and

|

26.97%
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TF-IDF-Final 19.33%

ﬂ

38.48%

Average 40.37%

|

0.00% 10.00% 20.00% 30.00% 40.00% 50.00%

Figure 4. Error Rate of each heuristic in
different time period

gray bars denoted that of using new dataset. We ob-
served that average error rate increased from 38.48% to
40.37%. We need to refine these heuristics and/or to
develop new heuristics, then verify whether MLBDMs
can incorporate that into the existing heuristics, in our
future work.

8 Conclusion

In this paper, we evaluated the performance of ma-
chine learning-based detection methods (MLBDMSs) in-
cluding AdaBoost, Bagging, Support Vector Machines
(SVM), Classification and Regression Trees (CART),
Logistic Regression (LR), Random Forests (RF), Neu-
ral Networks (NN), Naive Bayes (NB) and Bayesian
Additive Regression Trees (BART). Because we as-
sumed that the detection method must be accurate and
must have adjustment capability, we used f; measure,



error rate and AUC as performance metrics in the eval-
uation.

We employed 8 heuristics presented in [24] and an-
alyzed 3,000 URLs, which were composed of 1,500 le-
gitimate sites and the same number of phishing sites,
reported on PhishTank.com from November, 2007 to
February, 2008.

The result showed that the highest f; measure was
0.8581 in AdaBoost, followed by NN (0.8570), SVM
(0.8562), BART (0.8555), RF (0.8554), LR (0.8548),
NB (0.8547), Bagging (0.8527) and finally CART
(0.8384). The lowest error rate was 14.15% in Ad-
aBoost, followed by NN (14.21%), SVM (14.29%), RF
and BART (14.45%), LR (14.60%), NB (14.69%), Bag-
ging (14.82%), and finally CART (16.37%). The high-
est AUC was 0.9342 in AdaBoost, followed by BART
(0.9321), NN (0.9310), RF (0.9296), Bagging (0.9231),
NB (0.9215), LR (0.9172), CART (0.9062), and finally
SVM (0.8956). Additionally, we plotted the ROC curve
and found that all MLBDMs could achieve both high
true positive rates and low false positive rates. We
also compared MLBDMSs with the traditional detection
method. The result showed that AdaBoost, Bagging,
LR, RF, NN, NB, and BART-based detection methods
outperformed the traditional detection method.

We found the difference in performance among
MLBDMs was not so much, however, almost of all
evaluation results showed that MLBDMs achieved bet-
ter performance than the traditional detection method.
Accordingly, we concluded that employing machine
learning techniques was appropriate for the detection
of phishing sites.
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