
PhishCage: Reproduction of Fraudulent Websites in the
Emulated Internet

Daisuke Miyamoto
Information Technology Center

The University of Tokyo
2-11-16 Yayoi, Bunkyo-ku, Tokyo, JAPAN

daisu-mi@nc.u-tokyo.ac.jp

Yuzo Taenaka
Information Technology Center

The University of Tokyo
2-11-16 Yayoi, Bunkyo-ku, Tokyo, JAPAN

taenaka@nc.u-tokyo.ac.jp
Toshiyuki Miyachi

StarBED Technology Center
National Institute of Information and

Communications Technology
2-12 Asahi-dai, Nomi, Ishikawa, JAPAN

miyachi@nict.go.jp

Hiroaki Hazeyama
Graduate School of Information Science
Nara Institute of Science and Technology
8916-5 Takayama, Ikoma, Nara, JAPAN

hiroa-ha@is.naist.jp

ABSTRACT
This paper introduces PhishCage, an experimental infras-
tructure for phishing detection systems. Due to the short
life time of phishing sites, comparative study of effectiveness,
especially universality, among the detection systems is diffi-
cult. Our key idea is developing a testbed in which preserved
phishing sites can be browsed as if they existed in the wild.
According to our survey for phishing detection systems, this
paper defines the requirements for the testbed, and designs
PhishCage to meet with the requirements. The experiment
of PhishCage demonstrates our mapping algorithm for 121
phishing sites into the emulated Japanese Internet topology.
We confirm that phishing detection systems can obtain the
realistic IP address and autonomous system number of the
phishing sites in PhishCage, and few modifications enable
the systems to work as if they are in the real Internet. With
regard to the experimental results, we analyze the limita-
tion of PhishCage, and finally discuss the feasibility of our
emulation technique.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications
- Tools

General Terms
Experimentation, Security

Keywords
Phishing detection, Testbed, Emulation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMUTools 2013 March 5, Cannes, France.
Copyright 2013 ACM ...$15.00.

1. INTRODUCTION
Phishing is a fraudulent activity defined as the acquisition

of personal information by tricking an individual into believ-
ing the attacker is a trustworthy entity. Phishing attackers
lure people by using a phishing email, as if it were sent by a
legitimate corporation. The attackers also attract the email
recipients into a phishing site, which is the replica of an
existing web page, to fool a user into submitting personal,
financial, and/or password data.

To deal with phishing attacks, a heuristic-based detection
method has begun to garner attention. A heuristic is an
algorithm to identify phishing sites based on users’ experi-
ence, and checks whether a site appears to be a phishing site
or not. Based on the detection result from each heuristic,
the heuristic-based solution calculates the likelihood of a site
being a phishing site and compares the likelihood with the
defined discrimination threshold.

A current challenge of the heuristics-based solutions is in-
creasing detection accuracy of phishing sites. Due to that
the accuracy in the existing heuristic-based solutions was far
from suitable for practical use [24], many researchers have
attempted to both develop innovative heuristics and refine
the calculation algorithms of the likelihood.

However, it is not easy to confirm the effectiveness, espe-
cially universality, of their contributions. Due to that the
phishing sites tends to have short life time period, each re-
search employed its own unique dataset, which was com-
posed of phishing sites observed during distinct time pe-
riod; it hinders us to compare the detection accuracy of the
phishing sites among the detection methods. Further, mod-
ern methods cannot be tested in the past phishing sites. It
might be difficult to judge whether the methods are useful
only for the modern phishing sites or not - the detection
methods have some universality.

This paper aims at constructing an experimental infras-
tructure, named PhishCage, toward the evaluation of the
phishing detection methods. The key idea is the reproduc-
tion of the past phishing sites in the realistic network emula-
tion testbed. We design and implement a crawler to preserve
phishing content in the database, and reproduce the phish-

ing sites based on the Internet emulation methods [9]. Due
to that the methods allows experiments to keep their realism
in regard to the facility of the testbed, the phishing content
are not only able to browse as if the website exists, but also
delivered from web servers which are almost the same as the
real phishing server.
Based on these designs, we constructed our testbed by

471 of KVM instances on StarBED’s eleven nodes. Our
testbed emulated Japan Internet topology with realistic IP
addresses, and 112 phishing sites were able to browse. The
phishing servers were assigned the phishing sites’ IP ad-
dresses and were located at the phishing sites’ autonomous
system, in all of which had been observed in the wild. Even
if PhishCage had no connectivity to the real Internet, the
phishing detection methods worked regardless of the differ-
ence between real Internet and emulated one.
The rest of this paper is organized as follows. Section 2

explains our related work, and section 3 describes the design
of PhishCage. Section 4 demonstrates our experiment, and
section 5 discusses the limitation. Section 6 shows our future
work, and finally summarizes our contribution in section 7.

2. RELATED WORK
This section briefly summarizes our related work. We first

describe the current challenges in security testbed, and ex-
plain the state of the art in phishing detection systems.

2.1 Security Testbed
A testbed is a common platform for security experiment

since it allows observing of cyber attacks in a controlled
manner. Testbed nodes are connected only to the controlled
networks for keeping them physically isolated from the In-
ternet. However, malwares captured in the wild often be-
have differently when they run in a testbed, since they are
designed to be difficult to analyze.
There are many research contributions for obtaining re-

alistic result. Giving controlled Internet access to the soft-
ware runs on the testbed is one solution [2], although it has
possibility to exert a bad influence to the wild. The other
challenge is improving the realism for a security testbed. Ac-
cording Cavlet et al. [5], it should not be possible for software
running on a testbed to easily detect that is running on the
testbed. They also required that the environmental setup
should be as close as possible those of typical equivalent en-
vironment in the real world. Miwa et al. improved realism
by development of mimetic Internet which gives mimic in-
formation when malwares checked if it runs in a testbed [13].
In their environment, malwares are tricked as if they ran in
the wild.
Security experiments for network systems also require the

realism. For the experiments of the end-to-end network,
Sanaga et al. emulated capacity of a network link, de-
lay packets, and introduce packet loss [18]. Hazeyama et
al. developed the emulated Internet which had a similar
topology of the Internet for evaluating their Autonomous
System(AS)-level traceback system [9]. Their idea was allo-
cating one AS to one physical / virtual node. Emulation of
the real Internet made a testbed increase realism, however,
it was difficult to construct an experimental network which
had same size, same facilities, and / or same characteristics
of the real Internet. Therefore, some emulation techniques
should be taken to solve trade-offs among the scale of a
testbed.

2.2 Phishing Detection Systems
There are two distinct approaches for identifying phishing

sites. One is URL filtering. It detects phishing sites by
comparing the URL of a website where a user visits with a
URL blacklist, which is composed of the URLs of phishing
sites. Unfortunately, the effectiveness of URL filtering is
limited. In 2007, the detection accuracy of URL blacklist-
based systems was roughly 70% [24]. In 2009, Sheng et
al. reported [19] that URL blacklists were ineffective when
protecting users initially, as most of them caught less than
20% of phishing sites at hour zero. The rapid increasing of
phishing sites hinders URL filtering to work sufficiently due
to the difficulty of building a perfect blacklist.

The other approach is a heuristic-based method. There
are many heuristics have been proposed that are categorized
into several types as follows.

URL-based heuristics: The phishing sites’ URLs and
legitimate ones tend to differ. According to the heuristic-
based systems [1, 6, 25], the length of the phishing URL
is long, the URL uses IP address instead of fully qualified
domain name (FQDN), it employs a similar or otherwise
legitimate-sounding domain name, and it contains symbols
such as an at-mark, many hyphens or dots.

The FQDN appeared in the URL also gives hints to the
heuristics. Checking the life time duration of the issued
website is well-known heuristic as most phishing sites’ URL
expired in short time span. Some heuristics observes the
abuse of International Domain Name [11].

Whittaker et al. [22] proposed to analyze AS numbers to
which the page’s hosts correspond using the routing data.
Remind that phishing sites are often hosted on botnets whereas
the legitimate enterprises use reputable hosting services. They
explained that AS numbers gave a more accurate picture of
IP address association than looking at IP address subnets.

Content-based heuristics: The phishing content ap-
pears look-alike legitimate ones, but the heuristic finds the
difference by analysis of the content. According to Neil et
al. [6], many phishing sites have silly misspellings and / or
grammatical errors. The suspicious hyperlinks, input forms,
and the abuse of logo or trade marks are also analyzed.

Several researches [25] employed information retrieval tech-
niques. When their heuristics attempt to identify phishing
sites, they feed keywords extracted from the content, and
they then check if the site appears the top 30 search re-
sults. Xiang [23] updated this heuristics by using name en-
tity recognition techniques.

Visual Similarity-based detection systems [8,12] compare
the visual appearance between a suspected phishing site and
a legitimate site which is spoofed. When the two sites are
too similar, a phishing warning is raised. The heuristics
monitor the overall visual appearance such as text pieces,
styles, images, and estimate the similarity with comparison
algorithm, e.g., Earth Mover Distance.

The rest of heuristics employ other information sources.
Amir [10] monitored the websites’ certificate and its issuer,
and Netcraft Inc., proposed to use the popularity of the
website [15]. Our past research [14] employed the history of
users’ past trust decision which is also described that label-
ing as a phish or not.

3. PHISHCAGE
In this paper, we propose PhishCage, an experimental in-

frastructure for phishing detection methods. As we men-
tioned in section 1, it might be difficult to evaluate both
effectiveness and universality of the methods. This paper
tackles to the problem based on the emulation techniques.
Our key idea is the reproduction of the past phishing sites
in the realistic network emulation testbed. Regardless of
the short life span in phishing sites, PhishCage enables the
methods to work for the preserved phishing sites.

3.1 Requirements
Essentially, the testbed must have realism, that is, the

testbed has similar characteristics to the real Internet for
evaluating phishing detection systems. From the view point
of obtaining realistic results from the experiments, this sec-
tion explores our requirements for the testbed.
As we explained in section 2.2, the current phishing de-

tection methods require the website’s URL, a domain name
and its created date, IP address, and AS number in the cases
of the URL-based heuristics. On the contrary, the content-
based heuristics require web content; when the heuristics
analyze a website, its whole contents are able to browse as
if they exist. Further, PhishCage should equip a function of
a search engine or its search results for heuristics that are
based on information retrieval techniques.
Based on these considerations, we show our requirements

for the testbed as follows. The requirement 1 is general
requirements for the testbed. Our testbed must not have
Internet connections. The reproduced phishing sites can be
accessed by the experimenters. Testbed nodes have six roles,
including AS router nodes, phishing server nodes, informa-
tion server nodes, and finally a phishing detection node.
An AS router node represents an AS border router.

The node is assigned own AS number, and interconnects to
its neighbor ASes based on the real Internet topology. It also
advertises realistic network routes to the neighbor ASes, and
receives the routes from the neighbors.
A phishing server node hosts a phishing site. The node

runs HTTP server to respond phishing content to the request
from a phishing detection node. The phishing content can
be browsed as if the website exists. The IP address of the
node is as same as that in the wild.
An information server node provides information for

a phishing detection node. It provides the name resolution
function and responses the realistic IP address. It also stores
the check results of heuristics such as WHOIS and search
results in the wild, and responses to the heuristics runs in
the test environment.
A phishing detection node runs a phishing detection

system to check the phishing site hosted on phishing server
nodes. When the site employs FQDN in its URL, the node
queries to a DNS server which runs on the information server
node. If a heuristics needs to check the creation date of the
FQDN, it also asks to the information server node.

3.2 Design
Due to the nature of this study, the reproduced phishing

sites must be accessed only by the experimenter. Hence, we
decide that the experimental network is quarantined from
the Internet.
The study also employs an AS-level aggregation method

for the emulation of the phishing sites, because of the limited
numbers of the usable nodes in network emulation testbeds.
The aggregation is that AS router nodes and phishing server

Figure 1: Crawler for phishing sites

nodes are organized into one machine. In our testbed, an
AS node hosts the all phishing sites found at the AS in the
wild. For example, if phishing sites were found at the AS #1,
the AS node which represents AS #1 delivers these phishing
sites. The AS node is also assigned the IP addresses of the
phishing server nodes as alias IP addresses in order to accept
the connection from a phishing detection node.

As we mentioned in section 3.1, the phishing detection
methods requires the website’s URL, a domain name and
its created date, IP address, AS number, and the content.
These factors in the testbed can be as same as that in the
wild even if the testbed employs the AS-level aggregation to
phishing sites. Accordingly, we assume that there is no loss
of realism brought by the aggregation.

3.3 Implementation
We implemented a crawler to preserve phishing content

in the database. Based on the phishing crawlers in the past
researches [19, 25], we crawled phishing sites by using ren-
dering engine of the modern browser due to the capabil-
ity of JavaScript. Note that Phishing sites often employ
JavaScript, whereas traditional web crawlers do not equip
it.

Figure 1 illustrates our implemented system. First, an
information discovery node receives the URL of Phishing
sites from external data resources, and it then stores the
URL into phishing database. A web crawler periodically
checks the URL, and accesses to the newly registered URL
after it adds an unique identifier for the website in HTTP
request header. The proxy server removes the identifier from
the request, sends it to a phishing web server. After the
proxy server receives web content from the server, it stores
the content related to the identifier. Such crawling session
will finish when the whole content in the website has loaded
or threshold time has passed.

For reproduction of the phishing sites, we also imple-
mented a web server. When the server receives HTTP re-
quest from a web browser, the server obtains the unique
identifier from its URL by querying phishing database. Based
on the identifier, the server sends the preserved content, that
are stored when a web crawler visited to the URL, to the

Figure 2: Network topology for our experiment

browser. We then configured a DNS server to resolve the
FQDN in phishing sites’ URL to phishing server nodes. As
we mentioned in section 3.2, the nodes are assigned phish-
ing server’s IP addresses as the alias addresses, and hence,
a phishing detection node were navigated to the suitable
phishing server node. While the server nodes ran a reverse
web proxy which interconnected to our implemented web
server, they were able to output the realistic phishing con-
tent.

4. EXPERIMENT OF PHISHCAGE
This section explains how we setup the environment, and

it then describes our evaluation of PhishCage. The prior
objective of the evaluation was verifying whether or not our
idea, the AS-level aggregation was feasible to keep the re-
alism. Our evaluation checked if a phishing sites was able
to be browsed and it was delivered from the appropriate AS
node.

4.1 Experimental Setup
For constructing phishing server, we collected several in-

formation sources as follows.
Configuration of Network Topology: Our testbed

employed the emulated Internet for network topology. AnyBed [21]
is a useful tool for constructing the emulated Internet. It
requires two configuration files. One is the physical net-
work configuration file which describes testbed specific in-
formation such as hardware address of nodes and wiring
among network switches. Other one is the logical network
configuration file which describes network topology. Given
CAIDA’s AS Relationships Dataset (ASRD) [4] and a Route-
views Prefix to AS mappings Dataset (PFX2AS) [3], AnyBed
can generate the network configuration file in which every
BGP router advertises the realistic IP addresses. Due to
the facility of the testbed, we filtered ASes to extract a sub-
graph. This paper employed the region based filtering [9]
and constructed the network topology which represented
Japan Internet including 469 of ASes.
Phishing Dataset: During September to November 2011,

we stored the content of 50,451 phishing sites. Phishing
URLs were reported phishing sites at PhishTank [16] and
Council of Anti Phishing in Japan [7]. Of the 50,451 web-
sites, 854 were found in Japanese ASes, and we obtained the
contents of 121 websites; the rest were already expired when

Figure 3: Workflow in the PhishCage

we tried to browse. We also checked the websites by heuris-
tics described in section 2.2 and stored the detection results
brought by heuristics into a database. The schemes of the
database were organized the phishing site’s URL, FQDN, its
IP address, an AS number in which the IP address belonged,
WHOIS result by submitting domain name, search result by
submitting keywords, and the date of checking the website.

By using these datasets, we constructed PhishCage as
shown in Figure 2. Our experiment configured eleven phys-
ical nodes of StarBED [20] that had 2 × Intel 6-Core Xeon
X5670 CPU, 48GB memory, 2 × 500 GB SATA hard disk
drives and 4 gigabit ethernet controllers. All nodes were
installed Debian 6.0. Of the eleven nodes, ten nodes ran
KVM instances to setup the emulated Internet. Each in-
stance had 512 MB memory and 10 GB virtual hard disk.
They were also installed Debian 6.0 and were equipped with
Quagga [17], the most used open routing software. As we
explained in section above, we prepared the physical con-
figuration files for the KVM instances and the logical con-
figuration files based on ASRD and PFX2AS, and finally
made AnyBed generate the configuration files for OS and
Quagga. The rest one physical node was used to manage
each instance by providing DHCP, DNS and information for
a phishing detection node. In addition, it took a couple of
hours for building our test environment, excepting the in-
stall of OS to the physical / virtual node. But after we
installed one physical node and one virtual node, we were
able to copy the installed disk image to other nodes.

4.2 Functional Verification
Based on the phishing sites’ IP addresses, PhishCage as-

signed the address and ran HTTP server for each AS node.
When the AS node received an HTTP request, the node
delivered the phishing sites by reassembling the stored con-
tent. We also configured the information server to run DNS
server for resolving the phishing site’s FQDN to IP address.

From the view point of the functional verification, we
browsed the reproduced phishing sites. For a phishing de-
tection node, our experiment created one KVM instances
which connected to the emulated Internet. It then checked
if the sites were available by browsing from the phishing de-
tection node. Figure 3 illustrates the workflow. If a phishing
URL was not employed an IP address, the phishing detection
node (1) resolved its FQDN to the information server node,
and (2) obtained the IP address of the phishing site. It then
(3) accessed to the phishing server’s IP address through the
emulated Internet. The phishing server checked if the con-

tent has been stored, and finally (4) sent the entire phishing
content to the phishing detection node. This verification
showed that almost of all websites were able to browse as
they really exist. It also observed that an information server
provided the realistic DNS resolution.
We also tested our implemented version of the heuristics-

based solution [25] which used eight heuristics. Of the six of
eight, the heuristics worked regardless of the environmental
difference. The rest of heuristics employed WHOIS results
and search engine’s result, so we modified our implementa-
tion to retrieve them from the information server. Note that
the modification was negligible in this case.
We found that two exceptional patterns that we could

not browse the sites. One was that the content were not
correctly stored. Some phishing sites embedded the con-
tents of the legitimate sites with SSL. Due to that we stored
the content at the proxy, the content could not be captured
because of the encryption.
The other was similar to the SSL, but it embedded the

other phishing site’s content via IP address. Assigning every
IP address linked in the web page was not the suitable due to
the scale of the emulated topology; our experiment emulated
the topology in Japan, but the content in the outside of
Japan would not be loaded.
Our phishing emulation was that one AS node hosted all

phishing sites have been discovered at the AS. The former
problem was caused of our approach for storing phishing
sites, rather than emulation techniques. However, even if
we stored content without using the proxy server, the cer-
tificates in the wild and that in the emulated Internet might
be different. The latter was caused of the size of the testbed,
rather than emulation techniques. Accordingly, we believe
that our emulation is feasible to keep the reality in the con-
text of phishing detection systems. Increase of the testbed’s
scalability is important, but beyond the scope of this paper.

5. DISCUSSION
PhishCage reproduced phishing sites that have the same

URL, the same IP address, the same AS number, and the
same visual of the phishing site. But, some heuristics re-
quired such information that WHOIS results, search result,
as shown in section 4.2. The phishing detection systems
were still able to work when an experimenter accepted to
modify their systems. An alternative approach was to de-
velop functions of search engines for the testbed, however, it
might be difficult due to the unknown specifications of them.
Instead of browsing search engine, receiving the stored result
from the information server would support for the systems
to work.
The other approach was giving limited Internet access

to the phishing detection node. Remind that the many
nodes were assigned and advertised realistic IP addresses,
and hosted phishing sites. To avoid the damage suffered
from connecting these nodes to the Internet, we defined our
requirements to have no Internet access. But, giving In-
ternet access only to the phishing detection node had some
advantages. However, even if the system can access to the
search engine, its search result might differ from the search
result of the day, the site was detected.
However, this approach could help reproducing phishing

sites that embedded contents via SSL transactions. Emulat-
ing every certificate authority in the emulated Internet was
difficult, but answering the verification results that were al-

ready stored to the heuristics was feasible.

6. FUTURE WORK
In our future work, we will develop a cooperative detec-

tion system between phishing and other incidents. Empir-
ically, phishing sites are often hosted on botnets, networks
of compromised PCs (bots) controlled by a bot master. Ac-
cordingly, checking if a website hosted on a bot or not, will
give hints to identify a phishing site.

We consider that botnets can be categorized like a cloud
service and hence, multiple bot masters might share the re-
sources of bots in the case of “public” botnet. If various
attacks are simultaneously performed in the bot, the coop-
erative detection can be established.

Imagine such case that a phishing detection system found
a suspicious website, but the system cannot clearly deter-
mine the website as “phishing.” The system will label it as
“not phishing” even if the website is an actual phishing site.
However, if the host of the website sent suspicious IP packets
seems to be Denial of Service (DoS) attack, phishing detec-
tion system would be able to understand that the website is
hosted on a bot; it can label the site as phishing.

Accordingly, we assume that the use of the information
brought by different countermeasures will increase the detec-
tion accuracy. In order to achieve such detection systems, we
will extend PhishCage to support the reproduction of mul-
tiple incidents. It is difficult to construct a suitable testbed
due to the difference in attack vectors, however, the emu-
lated Internet can be a feasible solution for generating DoS
traffic [9], as well as phishing sites.

The difficulty in such cooperative methods would be var-
ious demands of time granularity. Phishing sites should be
discovered in hour zero [19], but countermeasures of DoS
often require to estimate the attack source in couple of min-
utes. The differences should be considered in the cooperative
analysis method against multiple incidents.

7. CONCLUSION
This study demonstrated an emulation technique for phish-

ing sites. To the best of our knowledge, this was the first
study for reproduction of phishing sites within the network
emulation testbed. According to our survey of phishing
detection methods, the URL-based heuristics required the
phishing site’s URL, a domain name and its created date,
IP address, and AS number. The content-based heuris-
tics needed that the whole contents of phishing sites can
be browsed as if they exist. Some content-based heuristics,
that used information retrieval techniques, also needed to
obtain search results.

This paper then defined the requirements of testbed for
phishing detection systems, aspect from the realism. With
regard to the requirements, we designed and implemented
systems for preservation of phishing sites and reproduction
of them.

For our analysis, we selected 121 phishing sites from ob-
served 50,451 phishing sites. Based on the past studies of
emulation techniques such as the emulated Internet [9], we
constructed an emulated Japanese Internet topology which
consisted of 469 ASes. Phishing servers were assigned the
realistic IP address and located at the realistic AS, all of
which had been observed in the wild. We confirmed that
the almost phishing sites were reproduced as if they existed,

and the stored information, such as WHOIS outputs and
search results, were able to be provided to phishing detec-
tion systems.
Based on these findings, we believe that our emulation

technique was a feasible solution to evaluate the effectiveness
and universality of phishing detection systems. To solve
remaining problems, we will explore the suitable way for
emulation of legitimate services and increase the number of
nodes in the testbed. We will also reproduce other attacks in
the emulated testbed, for further development of cooperative
detection methods among multiple incidents.

8. ACKNOWLEDGMENTS
We acknowledge the financial support from the University

of Tokyo Global COE Program “Secure-Life Electronics.”
We also acknowledge to Security Architecture Laboratory,
Network Security Research Institute, National Institute of
Information and Communications Technology.

9. REFERENCES
[1] Aburrous, M. R., Hossain, M. A., Thabatah, F.,

and Dahal, K. Modelling Intelligent Phishing
Detection System for E-banking Using Fuzzy Data
Mining. In Proceedings of International Conference on
CYBERWORLDS (Sep. 2009).

[2] Benzel, T. The science of cyber security
experimentation: the DETER project. In Proceedings
of the 27th Annual Computer Security Applications
Conference (Dec. 2011), pp. 137–148.

[3] CAIDA. Routeviews Prefix to AS mappings
Dataset(pfx2as). Available at: http://www.caida.
org/data/routing/routeviews-prefix2as.xml.

[4] CAIDA: cooperative association for internet
data analysis. The CAIDA AS Relationships
Dataset. Available at: http:
//www.caida.org/data/active/as-relationships/.

[5] Calvet, J., Davis, C. R., Fernandez, J. M.,
Guizani, W., Kaczmarek, M., Marion, J.-Y., and
St-Onge, P.-L. Isolated virtualised clusters: testbeds
for high-risk security experimentation and training. In
Proceedings of Workshop on Cyber Security
Experimentation and Test (Aug. 2010).

[6] Chou, N., Ledesma, R., Teraguchi, Y., Boneh,
D., and Mitchell, J. C. Client-side defense against
web-based identity theft. In Proceedings of the 11th
Annual Network and Distributed System Security
Symposium (Feb. 2004).

[7] Council of Anti Phishing. Provide of Phishing
sites’ URL. Available at:
http://www.antiphishing.jp/enterprise/url.html.
(in Japanese).

[8] Fu, A. Y., Wenyin, L., and Deng, X. Detecting
phishing web pages with visual similarity assessment
based on earth mover’s distance. IEEE Transactions
on Dependable and Security Computing 3, 4 (2006),
301–311.

[9] Hazeyama, H., Suzuki, M., Miwa, S., Miyamoto,
D., and Kadobayashi, Y. Outfitting an Inter-AS
Topology to a Network Emulation TestBed for
Realistic Performance Tests of DDoS
Countermeasures. In Proceedings of Workshop on
Cyber Security Experimentation and Test (Aug. 2008).

[10] Herzberg, A., and Gbara, A. TrustBar: Protecting
(even Näıve) Web Users from Spoofing and Phishing
Attacks. Tech. rep., Jul. 2004.

[11] Krammer, V. Phishing Defense against IDN Address
Spoofing Attacks. In Proceedings of the 4th Annual
Conference on Privacy, Security, and Trust (Oct.
2006).

[12] Medvet, E., Kirda, E., and Kruegel, C. Visual
Similarity-Based Phishing Detection. In Proceedings of
the 4th International Conference on Security and
Privacy in Communication Networks (Sep. 2008),
pp. 1–6.

[13] Miwa, S., Miyachi, T., Eto, M., Yoshizumi, M.,
and Shinoda, Y. Design and Implementation of an
Isolated Sandbox with Mimetic Internet Used to
Analyze Malwares. In Proceedings of DETER
Community Workshop on Cyber Security
Experimentation and Test (Aug 2007).

[14] Miyamoto, D., Hazeyama, H., and Kadobayashi,
Y. HumanBoost: Utilization of Users’ Past Trust
Decision for Identifying Fraudulent Websites. Journal
of Intelligent Learning Systems and Applications 2, 4
(2010), 190–199.

[15] Netcraft. Netcraft Anti-Phishing Toolbar. Available
at: http://toolbar.netcraft.com/.

[16] OpenDNS. PhishTank - Join the fight against
phishing. Available at: http://www.phishtank.com.

[17] Quagga. Quagga Routing Suite. Available at:
http://www.nongnu.org/quagga/.

[18] Sanaga, P., Duerig, J., Ricci, R., and Lepreau,
J. Modeling and Emulation of Internet Paths. In
Proceedings of the 6th USENIX Symposium on
Networked Systems Design and
Implementation(NSDI) (Apr. 2009).

[19] Sheng, S., Wardman, B., Warner, G., Cranor,
L. F., Hong, J., and Zhang, C. An Empirical
Analysis of Phishing Blacklists. In Proceedings of the
6th Conference on Email and Anti-Spam (Jul. 2009).

[20] StarBED Technology Center. StarBED Project.
Available at: http://www.starbed.org/.

[21] Suzuki, M., Hazeyama, H., Miyamoto, D., Miwa,
S., and Kadobayashi, Y. Expediting Experiments
across Testbeds with AnyBed: A Testbed-Independent
Topology Configuration System and Its Tool Set.
IEICE Transactions on Information and System
E92-D, 10 (Oct. 2009), 1877–1887.

[22] Whittaker, C., Ryner, B., and Nazif, M.
Large-Scale Automatic Classification of Phishing
Pages. In Proceedings of the 17th Annual Network and
Distributed System Security Symposium (Feb. 2010).

[23] Xiang, G., and Hong, J. I. A Hybrid Phish
Detection Approach by Identity Discovery and
Keywords Retrieval. In Proceedings of the 17th World
Wide Web Conference (Apr. 2009).

[24] Zhang, Y., Egelman, S., Cranor, L., and Hong,
J. Phinding Phish: Evaluating Anti-Phishing Tools. In
Proceedings of the 14th Annual Network and
Distributed System Security Symposium (Feb. 2007).

[25] Zhang, Y., Hong, J., and Cranor, L. CANTINA:
A Content-Based Approach to Detect Phishing Web
Sites. In Proceedings of the 16th World Wide Web
Conference (May 2007).

